Lesson Ten
More advanced graphics

Now that we learned the basics of Java graphics, now we can go on to more advanced graphics methods. First we will draw an arc with the drawArc() method. It requires six arguments: an x and a y-coordinate of the upper-left corner of an imaginary rectangular boundary, the width and height of the boundary, the beginning arc position, and the arc angle. This link shows the circle we created. You can achieve the same effect with the drawOval() and fillOval() methods. However, these methods only require four arguments, the same four as with drawing rectangles.

You can also draw rectangles that appear to have a shadow by using the draw3DRect() method. It takes the same coordinates and drawRect(), only it requires a fifth argument which is a Boolean value, true for the shadowing to be on the right and bottom, false for shadowing to be on the left and top. This link illustrates how the fill3DRect() method works. This effect works better with lighter colors. Notice that answering "true" or "false" not only changes the shadow, but the whole rectangle.

Say you wanted to create and odd shape that has many lines. You could draw the shape line-for-line, or you could use the drawPolygon() method. This method requires three arguments: an integer array of the x-coordinates, an integer array of the y-coordinates, and the number of pairs of coordinates you want to connect. An example of how you would create a polygon is written below:

import java.applet.*;
import java.awt.*;
public class Star extends Applet
{
int xPoints[] = {42, 52, 72, 52, 60, 40, 15, 28, 9, 32, 42};
int yPoints[] = {38, 62, 68, 80, 105, 85, 102, 75, 58, 60, 38};
public void paint(Graphics gr)
{
gr.setColor(Color.red);
gr.drawPolygon(xPoints, yPoints, xPoints.length);
}
}
This program will draw a red star in the upper left-hand corner. To see how this works, click here. We used the same program, yet added the copyArea() to copy the star and place it in a new spot. Then, we drew another star using the fillPolygon() method. Click here to see how this was done.

Another set of graphics methods are used to alter fonts. To know what fonts your computer supports, go into your word processing program, click the drop-down arrow next to your default font, and view all the fonts that your computer has. Write a few of them down on a piece of paper, or keep your word processor open. Now we can learn how your fonts are arranged. In newspapers and magazines, the publishers measure and align the font by its' height. The height is measured by the fonts leading (pronounced "ledding"), which is the amount of whitespace above a line of text, its' ascent, which is the height of a capital letter from its' baseline, and its' descent, which is the amount of space that the characters that hang below (like "p" and "y") the baseline take up. Here's how we created a program to read what our computer renders:

import java.applet.*;
import java.awt.*;
public class DemoFontMetrics extends Applet
{
String companyName = new String("Event Handlers Incorporated");
Font courierItalic = new Font("Courier", Font.ITALIC, 16), timesPlain = new Font("TimesRoman", Font.PLAIN, 16), helvetBold = new Font("Helvetica", Font.BOLD, 16);
int ascent, descent, height, leading;
int x = 10, y = 15;
static final int INCREASE = 15;

public void paint(Graphics gr)
{
gr.setFont(courierItalic);
gr.drawString(companyName, x, y);
displayMetrics(gr);
gr.setFont(timesPlain);
gr.drawString(companyName, x, y += 40);
displayMetrics(gr);
gr.setFont(helvetBold);
gr.drawString(companyName, x, y += 40);
displayMetrics(gr);

}

public void displayMetrics(Graphics g)
{
leading = g.getFontMetrics().getLeading();
ascent = g.getFontMetrics().getAscent();
descent = g.getFontMetrics().getDescent();
height = g.getFontMetrics().getHeight();
g.drawString("Leading is " + leading, x, y += INCREASE);
g.drawString("Ascent is " + ascent, x, y += INCREASE);
g.drawString("Descent is " + descent, x, y += INCREASE);
g.drawString("- - - - - -", x, y += INCREASE);
g.drawString("Height is " + height, x, y += INCREASE);
}
}
When we compiled and ran the applet, this is what we got. (NOTE: We had some problems running this in IE. Netscape let us view the program, while IE would show the output briefly and the disappear.)

Question: Cool!! I like creating graphics. But it seems that you have to retype everything over and over. Is there a way around that?

Answer: Good. You're learning something. Yes, there is an easier way to write programs. It's called inheritance.

Lesson Eleven
Inheritance and class extensions

Inheritance is where you can apply a general category to a more specific one. If you remember back in Lesson Three, we used the constructor Student oneStudent = new Student(). This is how inheritance works. We could also type Student studentTwo = new Student() and Student thirdStudent = new Student() to add two more students to the Student constructor. However, once you get a good hand on Java and go into the business industry, the program that's going to get used is the one just like yours, only it takes up less memory space because it used less programming code. Why keep reinventing the wheel when you don't have to? Inheritance allows you to inherit bits and pieces of programs from other programs. It also allows you to develop programs more quickly and with less errors because these bits and pieces have already been used and tested. The class Student would be considered the base class (also superclass or parent class), and ShowStudent would be a derived class (also subclass or child class).

In Lesson Eight and Nine, we use extends to inherit the attributes from the Applet class. Similarly, you can use extends to extend to any class. This means there is a superclass-subclass relationship between Student and ShowStudent. Here's how:

public class Student
{
 private int idNumber;
 private int hoursEarned;
 private double pointsEarned;
 private double pointAverage;
 Student()
 {
 idNumber = 42;
 hoursEarned = 3;
 pointsEarned = 3.5 * hoursEarned;
 pointAverage = pointsEarned / hoursEarned;
 }
 public int getIdNumber()
 {
 return idNumber;
 }
 public int getHoursEarned()
 {
 return hoursEarned;
 }
 public double getPointsEarned()
 {
 return pointsEarned;
 }
 public double getPointAverage()
 {
 return pointAverage;
 }
 public void setIdNumber(int n)
 {
 idNumber = n;
 }
 public void setHoursEarned(int hrs)
 {
 hoursEarned = hrs;
 }
 public void setPointsEarned(double pts)
 {
 pointsEarned = pts;
 }
 public void setPointAverage(double ave)
 {
 pointAverage = ave;
 }
}
Above is the Student program that you'll be using as your base class. Typical programs can be longer or shorter than the one we're using. Next, we'll look at ShowStudent:

public class ShowStudent extends Student
{
 private int socSecNum;
 public int getSocSecNum()
 {
 return socSecNum;
 }
 public void setSocSecNum(int num)
 {
 socSecNum = num;
 }
}
ShowStudent extends itself to Student and uses whatever codes Student has to share. This way, it has direct access to Student's get() and set() methods. Only the sublcass (derived or child) can inherit from a superclass (base or parent), not the other way around, kind of like mother to son. Now, if you want to use the Student items in ShowStudent, you could type:

ShowStudent firstStudent = new ShowStudent();
Once you have instantiated this object, you can use any of the Student objects by typing:

firstStudent.pointsEarned(2);
When you use a subclass to create methods, those methods override the methods in the superclass. This type of action is called polymorphism, where there are many forms that the same word can take depending on the object associated with the word. For instance, if you had another class named PrintStudents, you could add a method to ShowStudent and PrintStudent that looks like this:

public void printStudentInfo()
{
 System.out.println("Social Security Number: ");
}
After adding this method to each class, you call them in the same way you called firstStudent. To make sure that we haven't lost anyone, below are three programs that show how inheritance works. This first program sets up how an order will be placed and what fields will be required.

public class Order
{
 private String customerName = "A Johnson";
 private int idNum = 23654;
 private int quantityOrdered = 2;
 private double unitPrice = 8.95;
 protected double totalPrice = quantityOrdered * unitPrice;
 // getCustomerName() gets customerName
 public String getCustomerName()
 {
 return customerName;
 }
 // getIdNum() gets idNum
 public int getIdNum()
 {
 return idNum;
 }
 // getQuantityOrdered() gets quantityOrdered
 public int getQuantityOrdered()
 {
 return quantityOrdered;
 }
 // getUnitPrice() gets unitPrice
 public double getUnitPrice()
 {
 return unitPrice;
 }
 // setCustomerName() sets customerName
 public void setCustomerName(String name)
 {
 customerName = name;
 }
 // setIdNum() sets idNum
 public void setIdNum(int num)
 {
 idNum = num;
 }
 // setQuantityOrdered() sets quantityOrdered
 public void setQuantityOrdered(int qty)
 {
 quantityOrdered = qty;
 }
 // setUnitPrice() sets unitPrice
 public void setUnitPrice(double price)
 {
 unitPrice = price;
 }
 public void computeTotalPrice()
 {
 totalPrice = quantityOrdered * unitPrice;
 System.out.println("Total price: $" + totalPrice);
 }
}
Notice that totalPrice is "protected" instead of "public" or "private". This means that totalPrice is only able to be used by the program it's in and any programs that extend from it. This next program extends the first, then adds shipping and handling.

public class OrderShipping extends Order
{
 private double shipHandleCharge = 4.00;
 public void computeTotalPrice()
 {
 totalPrice += shipHandleCharge;
 System.out.println("Total price with S & H: $" + totalPrice);
 }
}
Now, if you'll notice that this is not only a smaller version of Order but it also extends it, so it doesn't need to have all the rest of Order's program retyped. If you were to print the file size of the two, OrderShipping would be larger because of the inheritance. This next program calls and executes both programs.

public class Billing
{
 public static void main(String[] args)
 {
 Order anOrder = new Order();
 OrderShipping anotherOrder = new OrderShipping();
 anOrder.computeTotalPrice();
 anotherOrder.computeTotalPrice();
 }
}
Question: There's got to be more than that. Isn't there any rules or guidelines that need to be followed?

Answer: Yes, there is. Next we'll learn how to use superclasses and subclasses.
Lesson Twelve
Superclasses and subclasses

When you are using superclasses and subclasses, it is important to remember that two constructors execute. The base, or parent, class constructor MUST execute prior to the extended, or child, class constructor. For example:
A Base Class
public class ABaseClass
{
// Base constructor that executes first
public ABaseClass()
{
System.out.println("This is from the base class");
}
}
A Subclass
public class ASubClass extends ABaseClass
{
// Subclass constructor that executes second
public ASubClass()
{
System.out.println("This is from the subclass");
}
}
A Demonstration Program
public class DemoConstructors
{
// The main method that executes both programs
public static void main(String[] args)
{
ASubClass child = new ASubClass();
}
}
When you run this application, you will get both sentences printing in order from base class to subclass. If you don't provide a constructor, Java will provide one for you. You can use as many constructors as you want, however, if you create one, you can never use the automatic version.

When a superclass constructor requires arguments, you need a constructor for each subclass. You call a superclass constructor by typing super(all, your, arguments);. With the exception of comments, super() must be the first line in the subclass constructor. Below are three programs that show how all this comes together. The first is the "parent" or "superclass" program.

public class EventWithConstructorArg
{
 private int eventGuests;
 // constructor that requires arguments
 public EventWithConstructorArg(int guests)
 {
 eventGuests = guests;
 }
 // displays the number of guests
 public void printEventGuests()
 {
 System.out.println("Event guests: " + eventGuests);
 }
 public void printHeader()
 {
 System.out.println("Simple event: ");
 }
 // setEventGuests() sets up the prompt for the user and stores the input
 public void setEventGuests() throws Exception
 {
 char inChar;
 String guestsString = new String("");
 System.out.print("Enter the number of guests at your event ");
 inChar = (char)System.in.read();
 while(inChar >= '0' && inChar <= '9')
 {
 guestsString = guestsString + inChar;
 inChar = (char)System.in.read();
 }
 eventGuests = Integer.parseInt(guestsString);
 System.in.read();
 }
}
This next one is the "child" or "subclass" program that passes arguments to the parent program.

public class DinnerEventWithConstructorArg extends EventWithConstructorArg
{
 char dinnerChoice;
 // constructor that calls parent constructor
 public DinnerEventWithConstructorArg(int guests)
 {
 // with the exception of these comments, super() MUST be
 // the first statement in the subclass (or child) constructor
 super(guests);
 }
 public void printDinnerChoice()
 {
 if(dinnerChoice == 'b')
 System.out.println("Dinner choice is beef.");
 else
 System.out.println("Dinner choice is chicken.");
 }
 public void printHeader()
 {
 System.out.println("Dinner event: ");
 }
 public void setDinnerChoice() throws Exception
 {
 System.out.println("Enter dinner choice");
 System.out.print("b for beef, c for chicken: ");
 dinnerChoice = (char)System.in.read();
 System.in.read(); System.in.read();
 }
}
This last programs shows how the child program sends the arguments to the parent class. Although there are more things programmed than are being asked of this program, it is only the statments that are relavent to this lesson that are being called in this program.

public class UseEventsWithConstructorsArg
{
 public static void main(String[] args) throws Exception
 {
 EventWithConstructorArg anEvent = new EventWithConstructorArg(45);
 DinnerEventWithConstructorArg aDinnerEvent = new DinnerEventWithConstructorArg(65);
 anEvent.printHeader();
 anEvent.printEventGuests();
 aDinnerEvent.printHeader();
 aDinnerEvent.printEventGuests();
 }
}
Once compiled and error-free, your programs should have this output:

Simple event:
Event guests: 45
Dinner event:
Event guests: 65
You can access a parent class' methods by using the keyword super. To do this, you would need to type is as this:

super.anySuperclassMethod();
A child class cannot inherit "private" parent class members. They can, however, inherit protected data. This is called information hiding. Private data and methods cannot be extended from a superclass. If a superclass has data or methods that are protected, then a child class can use the inherited protected data or methods. In other words, if you could use private data outside of a superclass, the idea of information hiding would be lost.

Question: Wow!! Inheritance seems to make things easier to program. Is there anything more about inheritance that I should know?

Answer: Yes, there is. Next we'll learn about abstract classes and dynamic method binding.
Lesson Thirteen
Abstract classes

An abstract is a class that you cannot create any concrete objects, but you can extend from. You use the keyword abstract when you declare the class. You can also create methods that are abstracts that can be inherited. Below is an example of an abstract class.

public abstract class Animal
{
private String name;
public Animal(String nm)
{
name = nm;
}
public String getName()
{
return(name);
}
public abstract void speak();
}
Now that you have an abstract class created, you can create other classes that are extended form this class like the one below:

public class Cow extends Animal
{
 public Cow(String nm)
 {
 super(nm);
 }
 public void speak()
 {
 System.out.println("Moo");
 }
}
You must either provide a subclass method to override a superclass abstract method if you want to instantiate any subclass objects, or declare the subclass as an abstract so you can extend the subclass into sub-subclasses.

When a superclass is abstract, objects of that superclass cannot be instantiated, but they can be referenced. You do this by typing ref.objectName(). This is called dynamic method binding. The following programs show how a reference works.

abstract class AbstractClass1 {
protected AbstractClass1() {
System.out.println("AbstractClass1 constructor called");
}

public abstract void distinct_method();

public void common_method() {
System.out.println("common_method called");
distinct_method();
}
}

class ConcreteClass extends AbstractClass1 {
public void distinct_method() {
System.out.println("distinct_method called");
}
}

public class AbstractDemo1 {
public static void main(String args[]) {
AbstractClass1 ref;

//ref = new AbstractClass1();

ref = new ConcreteClass();
ref.common_method();
}
}
Note: you cannot create a new instance of an abstract class. The comment is intended to notify that the class has been referenced. If you got rid of the comment lines // and compiled the program, you'd get an error.

A good idea to keep in mind is to create a superclass reference and treat subclass objects as superclass objects so you can create an array of different objects that share the same ancestry. For example, say you set up three classes, Account (abstract), and two child classes, Checking and Savings. You have fields in Account for account number and balance, a constructor that requires the account number and sets the balance to 0.0, a set() method for the balance, and two abstract get() methods for each field. In Checking, the get() method prints "Checking Account Information", the account number, and the balance. Savings has a field for the interest rate, requires the Savings constructor to accept an argument for the interest rate, then the get() method prints "Savings Account Information", the account number, the balance and the interest rate. Now, if you wanted to show a mix of ten accounts, you might use an array like this:

public class AccountArray
{
 public static void main(String[] args)
 {
 Account[] ref = new Account[10];
 Checking checkOne = new Checking(7564);
 Checking checkTwo = new Checking(25661);
 Checking checkThree = new Checking(3104);
 Checking checkFour = new Checking(29942);
 Checking checkFive = new Checking(8306);
 Savings saveOne = new Savings(7564, 3.1);
 Savings saveTwo = new Savings(25661, 3.3);
 Savings saveThree = new Savings(3104, 3.5);
 Savings saveFour = new Savings(29942, 3.7);
 Savings saveFive = new Savings(8306, 3.9);
 ref[0] = checkOne;
 ref[1] = checkTwo;
 ref[2] = checkThree;
 ref[3] = checkFour;
 ref[4] = checkFive;
 ref[5] = saveOne;
 ref[6] = saveTwo;
 ref[7] = saveThree;
 ref[8] = saveFour;
 ref[9] = saveFive;
 for(int x = 0; x < 5; ++x)
 {
 ref[x].getAcctNum();
 ref[x].getAcctBal();
 }
 for(int x = 5; x < 10; ++x)
 {
 ref[x].getAcctNum();
 ref[x].getAcctBal();
 }
 }
}
Note the two for loops. One is specifically for the Checking class and the other is specifically for the Savings class.

Question: After all this learning, I should be able to create any software program I want. Is there anything more I need to know?

Answer: Like you said, you should be able to create any software program you want if you knew a little bit more about the Abstract Windows Toolkit.

Lesson Fourteen
Understanding the Abstract Windows Toolkit (AWT)

In Lesson Eight, you learned a little about the Abstract Windows Toolkit (AWT) when you created you applets. Now, combining inheritance with the AWT, we will be able to create more interactive programs. This is what we call a graphical user interface (GUI). All of the programs we will be creating has methods that come from the Component class. Two of these methods are setSize(), which allows you to set the size of any component, and setVisible(), which allows you to make a component visible or invisible to the user. Note: these programs are applications, not applets, but these can be added to applets. Let's look at the code for a simple Frame:

import java.awt.*;
public class DemoFrame
{
public static void main(String[] args)
{
Frame aFrame = new Frame("This is a frame");
aFrame.setSize(200,100);
aFrame.setVisible(true);
}
}
Setting true to the setVisible() method makes the window appear. To remove the window, set the value to false. This Frame works just like every other Frame you've used with the exception of that this Frame won't close. The reason for this is that you may want to add a closing event like closing a file, disable buttons, etc. For this, you have a method called windowClosing(). To do this, you would add:

public void windowClosing(WindowEvent e)
{
System.exit(0);
}
You use a "0" in the exit() statement to signal that the program will close normally. There are six other methods that must be included in the programs:

windowClosed()
windowDeiconified()
windowIconified()
windowOpened()
windowActivated()
windowDeactivated()

Now that we have a general idea of what is included in the creation of a Frame, we can create a Frame that we can close. Below are two programs that will allow us to do that.

import java.awt.event.*;
import java.awt.*;
public class FrameYouCanClose extends Frame implements WindowListener
{
public FrameYouCanClose(String str)
{
super(str);
addWindowListener(this);
}
public void windowClosing(WindowEvent e)
{
System.exit(0);
}
public void windowClosed(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
}

import java.awt.*;
public class DemoClosingFrame
{
public static void main(String[] args)
{
FrameYouCanClose aFrame = new FrameYouCanClose("This is a frame that closes");
aFrame.setSize(400,100);
aFrame.setVisible(true);
}
}
Now that we have created a program that will allow us to close the Frame window, we can do just about anything. But this seems like a lot of work to do everytime you want to create a Frame. For this, we will use the WindowAdapter class. Classes that are adapter classes implement an abstract class and provide the required methods for all of the abstract class' methods. In "FrameYouCanClose.java", eliminate FrameYouCanClose() method and everything after the windowClosing() method except the closing curly bracket. Save this program as "WindowYouCanClose.java". Make sure that this program extends WindowAdapter instead of Frame and remove the "implements WindowListener". Go back to "FrameYouCanClose.java" and rename it as "FrameYouCanClose2.java". This can still extend Frame, but remove the "implements WindowListener" from here also. Rename the FrameYouCanClose() method "FrameYouCanClose2()". In the addWindowListener(this), change "this" to "new WindowYouCanClose()". Then, go to "DemoClosingFrame.java", rename it "DemoClosingFrame2.java", then change all the "FrameYouCanClose" to "FrameYouCanClose2". Next we'll create an applet that uses the FrameYouCanClose objects.

import java.awt.event.*;
import java.awt.*;
import java.applet.*;
public class AppletDemoComponents extends Applet implements ActionListener
{
private FrameYouCanClose fycc = new FrameYouCanClose("Demo Components");
private Button showFrame = new Button("Press Me");
Label msg1 = new Label("Event Handlers Incorporated");
Label msg2 = new Label("Plan with us!");
Label msg3 = new Label("You just relax. We'll manage the fuss.");
int pressCounter = 0;
public void init()
{
add(showFrame);
fycc.setSize(200,150);
showFrame.addActionListener(this);
}
public void actionPerformed(ActionEvent e)
{
if(pressCounter == 0)
fycc.add(msg1);
else if(pressCounter == 1)
{
fycc.remove(msg1);
fycc.add(msg2);
}
else if(pressCounter == 2)
{
fycc.remove(msg2);
fycc.setSize(400,150);
fycc.add(msg3);
}
if(pressCounter < 3)
fycc.setVisible(true);
else
fycc.setVisible(false);
if(pressCounter == 4)
showFrame.setEnabled(false);
++pressCounter;
}
}
Note: Depending upon the version of Java you are using, you might see a "Warning: AppletWindow" message in your applet. Ignore this message.

Question: I thought a graphical user interface was more like a form. Where are the other objects besides the Label and Button objects?

Answer: You are learning too quick. It's almost like you are using telepathy. Next we'll learn about the rest of the components.
Lesson Fifteen
Using AWT Component methods

Now that we can create Frames and applets that use Frames, the other components that we can use in Frames and applets. One popular type of component is the Checkbox. Checkboxes are input boxes with labels. You can type the label as you create the checkbox (i.e. Checkbox boxOne = new Checkbox("Click here to select");), or you can add one later with setLabel() (i.e. boxOne.setLabel("Select this box");. Below is a program that shows how checkboxes work.

import java.awt.event.*;
import java.awt.*;
import java.applet.*;
public class CarOptions extends Applet implements ItemListener
{
String companyName = new String("North Star Ford");
Font bigFont = new Font("Arial", Font.PLAIN, 24);
Checkbox stereoBox = new Checkbox("AM/FM stereo");
Checkbox seatsBox = new Checkbox("bucket seats");
Checkbox acBox = new Checkbox("air conditioning");
Checkbox roofBox = new Checkbox("sun roof");
int stereoPrice = 200, seatsPrice = 300, acPrice = 600, roofPrice = 1000, totalPrice = 0;
public void init()
{
add(stereoBox);
stereoBox.addItemListener(this);
add(seatsBox);
seatsBox.addItemListener(this);
add(acBox);
acBox.addItemListener(this);
add(roofBox);
roofBox.addItemListener(this);
}
public void paint(Graphics gr)
{
gr.setFont(bigFont);
gr.setColor(Color.blue);
gr.drawString(companyName,10,100);
gr.drawString("Options price estimate",10,150);
gr.setColor(Color.black);
gr.drawString(Integer.toString(totalPrice),280,150);
}
public void itemStateChanged(ItemEvent check)
{
totalPrice = 0;
if(stereoBox.getState())
{
totalPrice += stereoPrice;
}
if(seatsBox.getState())
{
totalPrice += seatsPrice;
}
if(acBox.getState())
{
totalPrice += acPrice;
}
if(roofBox.getState())
{
totalPrice += roofPrice;
}
repaint();
}
}
To see how this program works, click here and try clicking each box on and off to see the cost of the options change as you select different options.

Checkboxes are good for giving the user multiple options. However, in the previous program, you can see that you can select as many as you want. What if you only wanted the user to select one option? This is where the CheckboxGroup (also known as "radio buttons") come into play. Consider the program below:

import java.awt.event.*;
import java.awt.*;
import java.applet.*;
public class DemoCheckBoxGroup extends Applet implements ItemListener
{
String companyName = new String("Event Handlers Incorporated");
Font bigFont = new Font("Arial", Font.PLAIN, 24);
Checkbox cocktailBox = new Checkbox("Cocktails");
Checkbox dinnerBox = new Checkbox("Dinner");
int cocktailPrice = 300, dinnerPrice = 600, totalPrice = 200;
int beefPrice = 100, fishPrice = 75;
CheckboxGroup dinnerGrp = new CheckboxGroup();
Checkbox chickenBox = new Checkbox("Chicken", false, dinnerGrp);
Checkbox beefBox = new Checkbox("Beef", false, dinnerGrp);
Checkbox fishBox = new Checkbox("Fish", false, dinnerGrp);
public void init()
{
add(cocktailBox);
cocktailBox.addItemListener(this);
add(dinnerBox);
dinnerBox.addItemListener(this);
add(chickenBox);
chickenBox.addItemListener(this);
add(beefBox);
beefBox.addItemListener(this);
add(fishBox);
fishBox.addItemListener(this);
}
public void paint(Graphics gr)
{
gr.setFont(bigFont);
gr.setColor(Color.magenta);
gr.drawString(companyName,10,100);
gr.drawString("Event price estimate",10,150);
gr.setColor(Color.blue);
gr.drawString(Integer.toString(totalPrice),280,150);
}
public void itemStateChanged(ItemEvent check)
{
totalPrice = 200;
if(cocktailBox.getState())
{
totalPrice += cocktailPrice;
}
if(dinnerBox.getState())
{
totalPrice += dinnerPrice;
Checkbox dinnerSelection = dinnerGrp.getSelectedCheckbox();
if(dinnerSelection == beefBox)
totalPrice += beefPrice;
else if(dinnerSelection == fishBox)
totalPrice += fishPrice;
else
chickenBox.setState(true);
}
repaint();
}
}
This program starts your party bill out at a base price of $200.00. If you click on "Cocktails", it adds $300.00 to the cost of the party. If you were to click on "Dinner", it adds $600.00 to the cost and the "Chicken" radio button is selected. To see how the whole program functions, click here. Sometimes radio buttons can be too many and clutter up the viewing area. This is where the Choice object would be an option. Like a "list box", the Choice object displays a list of options that the user can choose from. To allow for these options, the Choice object uses the same "get()" methods (i.e. getSelectedIndex()). With these methods, you can access arrays using variables created by the methods. To see how this is done, let's look at the following program:

import java.awt.event.*;
import java.awt.*;
import java.applet.*;
public class DemoChoice extends Applet implements ItemListener
{
String companyName = new String("Event Handlers Incorporated");
Font bigFont = new Font("Arial", Font.PLAIN, 24);
int totalPrice = 0;
Choice entertainmentChoice = new Choice();
int[] actPrice = {0,725,325,125};
public void init()
{
add(entertainmentChoice);
entertainmentChoice.addItemListener(this);
entertainmentChoice.add("No entertainment");
entertainmentChoice.add("Rock band");
entertainmentChoice.add("Pianist");
entertainmentChoice.add("Clown");
}
public void paint(Graphics gr)
{
gr.setFont(bigFont);
gr.setColor(Color.magenta);
gr.drawString(companyName,10,100);
gr.drawString("Price for entertainment",10,150);
gr.setColor(Color.blue);
gr.drawString(Integer.toString(totalPrice),280,150);
}
public void itemStateChanged(ItemEvent choice)
{
int actNum = entertainmentChoice.getSelectedIndex();
totalPrice = actPrice[actNum];
repaint();
}
}
Now, instead of a clutter of radio buttons, you have one list. Here's how your program should look. If you'll notice, there's one minor problem, you can only choose one choice at a time. To remedy this, we can create a List. Similar to a Choice object, you can choose from an array. A List, however, displays all options at one time instead of a "drop-down" box. You can also choose multiple options from this List. To see how this is done, let's look at the program below:

import java.awt.event.*;
import java.awt.*;
import java.applet.*;
public class DemoList extends Applet implements ItemListener
{
String companyName = new String("Event Handlers Incorporated");
Font bigFont = new Font("Arial", Font.PLAIN, 24);
int totalPrice = 0;
List partyFavorList = new List();
int[] favorPrice = {8,10,25,35};
public void init()
{
add(partyFavorList);
partyFavorList.setMultipleMode(true);
partyFavorList.addItemListener(this);
partyFavorList.add("Hats");
partyFavorList.add("Streamers");
partyFavorList.add("Noise makers");
partyFavorList.add("Balloons");
}
public void paint(Graphics gr)
{
gr.setFont(bigFont);
gr.setColor(Color.magenta);
gr.drawString(companyName,10,100);
gr.drawString("Price for entertainment",10,150);
gr.setColor(Color.blue);
gr.drawString(Integer.toString(totalPrice),280,150);
}
public void itemStateChanged(ItemEvent check)
{
int[] favorNums = partyFavorList.getSelectedIndexes();
totalPrice = 0;
for(int x = 0; x < favorNums.length; ++x)
totalPrice += favorPrice[favorNums[x]];
repaint();
}
}
Here's the final product. Notice now that you select as many options as you want from a neat looking list.

Question: Ok, wait a minute! In HTML, I can create a form a lot easier and I can place things where I want. I can even do mouse events with JavaScript. How do you get the same outcome from Java?

Answer: True. You can do all of what you said with greater ease than with Java. But you are here to learn how you can do the SAME thing using Java. To show you how to make things look and work similar, let's look at the layout managers and the event model.

Lesson Sixteen
Introducing the Layout Managers

Now that we know how to add components to a frame, let's learn how to place each component where we want them. Making sure that no components are obstructing each other is the key to making Java programs attractive and user friendly. Therefore, we need to use one of the three forms of what we call layout managers. Layout managers are part of your JDK that aligns your components in various, programmer-defined regions. The first type of layout manager is the BorderLayout. The program below shows how to create a border layout:

import java.applet.*;
import java.awt.*;
public class DemoBorder extends Applet
{
private Button nb = new Button("North Button");
private Button sb = new Button("South Button");
private Button eb = new Button("East Button");
private Button wb = new Button("West Button");
private Button cb = new Button("Center Button");

public void init()
{
setLayout(new BorderLayout());
add(nb,"North");
add(sb,"South");
add(eb,"East");
add(wb,"West");
add(cb,"Center");
}
}
Seeing as none of these buttons perform any actions, there is no need for an ActionListener(). To see what we created, click here. The next type of layout is the FlowLayout. FlowLayout arranges Components in a row across the Container. If we change the setLayout() to setLayout(new FlowLayout());, we'll get this new change. You can align the buttons by typing FlowLayout.LEFT, FlowLayout.CENTER, or FlowLayout.RIGHT within the FlowLayout() method. The last type of layout is the GridLayout. In a GridLayout, you indicate the number of rows and columns in the Container. To do this, you change the same line we changed in the FlowLayout to get setLayout(new GridLayout(2,3)); and you would get this new layout. Although these arrange things nicely, you are limited to the number of screen arangements. Using the Panel() method, you can put a GridLayout inside of a BorderLayout. You can also have nested Panels. To create a Panel, you can type Panel() if you want to use a default layout manager, or Panel(LayoutManager layout) if you want to specify a layout manager.

Question: Well, now these layouts look good, but looks can be deceiving. How do I get the buttons, text fields, and choice boxes to work?

Answer: This is where we go more in depth with using Layout Managers and the Event Model.
